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Abstract
We investigate propagation of slow-light solitons in atomic media described by
the nonlinear �-model. Under a physical assumption, appropriate to the slow
light propagation, we reduce the �-scheme to a simplified nonlinear model,
which is also relevant to 2D dilatonic gravity. Exact solutions describing
various regimes of stopping slow-light solitons can then be readily derived.

PACS numbers: 05.45.Yv, 42.50.Gy, 03.75.Lm

Recent progress in experimental techniques for the coherent control of light–matter interaction
opens many opportunities for interesting practical applications. The experiments are carried
out on various types of materials such as cold sodium atoms [1, 2], rubidium atom vapours
[3–6], solids [7, 8], and photonic crystals [9]. These experiments are based on the control over
the absorption properties of the medium and study slow light and superluminal light effects.
The control can be realized in the regime of electromagnetically induced transparency (EIT),
by the coherent population oscillations or other induced transparency techniques. The use of
each different material brings specific advantages important for the practical realization of the
effects. For instance, the cold atoms have negligible Doppler broadening and small collision
rates, which increases ground-state coherence time. The experiments on rubidium vapours
are carried at room temperatures and this does not require application of complicated cooling
methods. The solids are a strong candidate for realization of long-living optical memory.
Photonic crystals provide a broad range of paths to guide and manipulate slow light. The
interest in the physics of light propagation in atomic vapours and Bose–Einstein condensates
(BEC) is strongly motivated by the success of research on storage and retrieval of optical
information in these media [1–4, 10, 11].

Even though the linear approach to describing these effects based on the theory of
electromagnetically induced transparency [12] is developed in detail [13], modern experiments
require more complete nonlinear descriptions [11]. The linear theory of EIT assumes the
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Figure 1. The �-scheme for working energy levels of sodium atoms.

probe field to be much weaker than the control field. To allow significant changes in the initial
atomic state due to interaction with the optical pulse, in our consideration we go beyond the
limits of linear theory. In the adiabatic regime, when the fields change in time very slowly,
approximate analytical solutions [14, 15] and self-consistent solutions [16] were found and
later applied in the study of processes of storage and retrieval [17]. Different EIT and self-
induced transparency solitons in nonlinear regime were classified and numerically studied for
their stability [18]. As was demonstrated by Dutton and coauthors [19] strong nonlinearity can
result in interesting new phenomena. Recent experiments and numerical studies [11, 20] have
shown that the adiabatic condition can be relaxed, allowing for much more efficient control
over the storage and retrieval of optical information.

In this paper we study the interaction of light with a gaseous active medium whose working
energy levels are well approximated by the �-scheme. Our theoretical model is a very close
prototype for a gas of sodium atoms, whose interaction with the light is approximated by
the structure of levels of the �-type. The structure of levels is given in figure 1, where two
hyperfine sub-levels of sodium state 32S1/2 with F = 1, F = 2 are associated with |1〉 and |2〉
states, respectively [1]. The excited state |3〉 corresponds to the hyperfine sub-level of the term
32P3/2 with F = 2. We consider the case when the atoms are cooled down to microkelvin
temperatures in order to suppress the Doppler shift and increase the coherence life-time for the
ground levels. The atomic coherence life-time in sodium atoms at a temperature 0.9 µK is of
the order of 0.9 ms [2]. Typically, in the experiments the pulses have a length of microseconds,
which is much shorter than the coherence life-time and longer than the optical relaxation time
of 16.3 ns.

The gas cell is illuminated by two circularly polarized optical beams co-propagating in the
z-direction. One beam, denoted as channel a, is a σ +-polarized field, and the other, denoted
as b, is a σ−-polarized field. The corresponding fields are presented within the slow-light
varying amplitude and phase approximation (SVEPA) as

�E = �eaEa ei(kaz−ωat) + �ebEb ei(kbz−ωbt) + c.c. (1)

Here, ka,b are the wave numbers, while the vectors �ea, �eb describe polarizations of the fields.
It is convenient to introduce two corresponding Rabi frequencies:

�a = 2µaEa

h̄
, �b = 2µbEb

h̄
, (2)

where µa,b are dipole moments of quantum transitions in the channels a and b.
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Within the SVEPA, and in the sharp line limit case (� = 0), the wave equations for two
Rabi-frequencies are reduced to the first order PDEs:

∂ζ�a = iν0ψ3ψ
∗
1 , ∂ζ�b = iν0ψ3ψ

∗
2 . (3)

Here ζ = z/c, τ = t − z/c, and ν0 is a coupling constant, which depends on the density of
atoms.

The Schrödinger equation for the amplitudes ψ1,2,3 of atomic wavefunction reads

∂τψ1 = i

2
�∗

aψ3;

∂τψ2 = i

2
�∗

bψ3;

∂τψ3 = −γ

2
ψ3 +

i

2
(�aψ1 + �bψ2).

(4)

Here γ describes the relaxation rate, and we set h̄ = 1. We can now exclude the amplitudes
of the lower levels ψ1,2 and rewrite equations (3), (4) in the form

1

ψ∗
3

∂τ

1

ψ3
∂ζ �a = ν0

2
�a;

1

ψ∗
3

∂τ

1

ψ3
∂ζ �b = ν0

2
�b;

∂τ |ψ3|2 = −γ |ψ3|2 − 1

2ν0
∂ζ (|�a|2 + |�b|2).

∂τϕ3 = − 1

2ν0|ψ3|2 (|�a|2∂ζϕa + |�b|2∂ζϕb).

(5)

Here, ϕa,b,3 are the phases of the fields �a,b and ψ3, respectively. For simplicity, and without
a loss of generality, we assume in equations (5) that the fields �a,b are real, i.e. ϕa,b = 0.
Therefore, we can choose ϕ3 = 0. Note that the first two equations are wave equations for the
fields in curvilinear space described by the metric depending on the amplitude of the excited
state ψ3.

To make parameters dimensionless, we measure the time in units of the optical pulse
length tp = 1 µs typical for the experiments on the slow-light phenomena [1]. Therefore,
the Rabi frequencies are normalized to MHz. The spatial coordinate will be normalized to
the spatial length of the pulse slowed down in the medium to several metres per second.

According to the linear theory, the group velocity of slow-light pulse is vg ≈ c
�2

0
2ν0

. Here �0

is a magnitude of the controlling field required in EIT experiments. Typically, this field has a
magnitude of order of few megahertz. So, we choose �0 = 3 and vg = 10−7c as representative
values reported in experiments with BEC of sodium atoms. Hence the pulse spatial length is
lp = vgtp = 30 µm, and ζ is normalized to 10−13s. In the dimensionless units, the coupling

constant ν0 = �2
0

2 = 4.5.
In the absence of relaxation, i.e. for γ = 0, the system of equations (3), (4) is exactly

solvable in the framework of the inverse scattering method (IS) [21–24]. In the present work
we provide an elementary method to derive slow-light solitons for the case of an arbitrary
controlling field.

In the context of slow light phenomena, the system is assumed to be initially in the
following stationary state:

�a = 0, �b = �(τ), |ψat 〉 = |1〉. (6)
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Note that the state |1〉 is a dark-state for the controlling field �(τ). This means that the
atoms do not interact with the field �(τ) created by the auxiliary laser. The configuration
equation (6) above corresponds to a typical experimental setup (see e.g. [1, 2, 4]).

We intend to study the dynamics of coupled atom-field modulations in the �-type model,
which can preserve their spatial shape to a large extent while propagating in the media. We
consider such solutions as a generalization of the dark-state polariton [25]. In the linear theory
the probe field only appears in �a , whereas in the nonlinear theory it also forms an inseparable
nonlinear superposition with the controlling field in the channel b. However, in both cases
the Rabi-frequency �a describes probe field modulations. Indeed, the field in the channel a
induces atomic transitions from the state |1〉 to the excited state |3〉. On the other hand, the
amplitude of the excited state drives the field �a . From the results of linear and nonlinear
theories of electromagnetically induced transparency (EIT) [11, 12, 14, 17, 24, 26] we can
infer a physically plausible assumption that the population of the upper level is proportional
to the intensity of the field in the probe channel a, i.e. |�a|2 ∼ |ψ3|2. In the present work we
assume that this observation is relevant for slow-light phenomena. Therefore, we postulate
that

|ψ3|2 = 2

ν0
k|�a|2, (7)

where k is an arbitrary parameter.
We emphasize that the imposed constraint equation (7) reduces equations (5) to

a simplified nonlinear system, which provides adequate descriptions of the slow light
propagation. In this sense the relation (7) is central for the present work. As we show
below this condition is sufficient and necessary for the slow-light solitons to exist. The
hypothesis equation (7) is motivated by the exact results obtained in [26] by the method
of inverse scattering, for the general case ϕa,b �= 0, as well as by the existing experimental
evidence. Introducing new notations: |�a| ≡ e−ρ,�b = η, we find from equation (5) together
with equation (7) that the field ρ satisfies the Liouville equation

∂ζτ ρ = −k e−2ρ. (8)

together with the constraint

∂ζτ η + ∂τρ∂ζ η = k e−2ρη, (9)

and an auxiliary equation

(4k(∂τ + γ ) + ∂ζ ) e−2ρ + ∂ζ η
2 = 0. (10)

It is interesting that the Liouville equation (8) appears in 2D gravity [27] and describes
a gravitational field defined by the metric gab = e−2ργab, where γab is the two-dimensional
Minkowski metric. This connection to 2D gravity is further emphasized by the observation
that any solution of dilatonic equations [27] satisfies the system of slow-light equations (8),
(9). The dilatonic equations have the following form:

∂ζτ ρ − ∂ηV (η)

4
e−2ρ = 0, ∂ζτ η +

V (η)

2
e−2ρ = 0, (11)

together with the constraint

∂ζτ η + 2∂τρ∂ζ η = 2kA e−2ρ. (12)

Here A(ζ, τ ) is an arbitrary source term and V (η) = 4k (A − η) plays the role of the dilatonic
potential. For the realization A(ζ, τ ) = ∂τm(τ) with an arbitrary function m(τ), equations
(11), (12) and (10) for γ = 0 can be readily solved, viz.
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ρ = −1

2
log

[
∂ζA+(ζ )∂τA−(τ )

(1 − kA+A−)2

]
, (13)

A+(ζ ) = −1

k
exp[−8ε0kζ ], (14)

A−(τ ) = exp

[
2ε0

∫
dτ

m2(τ ) + 1

]
, (15)

η = 2(∂τm − m∂τρ). (16)

The original fields �a,b then read

�a = 2ε0√
m2(τ ) + 1

sech(ϕ), (17)

�b = − 2ε0m(τ)

m2(τ ) + 1
tanh(ϕ) +

2∂τm(τ)

m2(τ ) + 1
, (18)

ϕ = −4kε0ζ +
∫

ε0 dτ

m2(τ ) + 1
, (19)

where ε0 is a real arbitrary constant defining the amplitude of slow-light soliton. Due to the
nonlinear nature of the superposition between the soliton and some background field present in
the system, we can define the background field �(τ) in several ways. For the sake of physical
applications we identify the background field as the asymptotic values of �b for ζ → ∞. The
background field reads

�(τ) = 2
∂τm(τ) + |ε0|m(τ)

m2(τ ) + 1
. (20)

The function �(τ) describes the controlling field, which governs the dynamics of the
system. The time dependence of this function is determined by modulation of the intensity of
the auxiliary laser. As can be readily seen, the velocity of the slow-light soliton reads

vg = 1

4k

1

m2(τ ) + 1
. (21)

For a constant controlling field �(τ) = �0, the group velocity of the slow-light soliton lies in
the interval

1

2

�2
0

ν0
<

vg

c
� �2

0

ν0
(22)

depending on the magnitude of ε0. The larger ε0 compared to �0 the lower the magnitude of
the group velocity is, approaching the result of linear theory.

Expression (22) immediately suggests that the signal stops, when �0 = 0. Therefore,
this expression is the main motivational source for the works on slow-light solitons (see
[24, 26] and references therein). We envisage the following dynamics scenario. We assume
that the slow-light soliton was created in the system before the time τ = 0 and is propagating
on the background of the constant controlling field �0. Suppose that at the moment τ = 0
the laser source of the controlling field is switched off. We assume that after this moment
the background field will decay reasonably rapidly, as described by a ‘switch-off’ function
f (τ). The front of the vanishing controlling field, described by the function f (τ), will then
propagate into the medium, starting from the point ζ = 0, where the laser is placed. The state
of the quantum system equation (6) is dark for the controlling field. Therefore the medium is
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transparent for the spreading front of the vanishing field, which then propagates with the speed
of light, eventually overtaking the slow-light soliton and stopping it. To realize this scenario,
we assume the controlling field �(τ) to be constant �0 for negative τ and a τ dependent
switch-off function f (τ) for positive τ , i.e. �(τ) = �0�(−τ) + f (τ)�(τ). Here �(τ) is the
Heaviside step function, while f (0) = �0. In this setting, the distance that the soliton travels
until it completely stops is

L = 1

4k

∫ ∞

0

dτ

m2(τ ) + 1
. (23)

This distance designates a geometrical point in the medium, where the slow-light soliton
disappears, writing itself into the medium as a standing memory bit in the form of a localized
polarization cluster.

From equation (20) a number of exactly solvable regimes for the stopping of the slow-light
soliton can be identified. For m(τ) = eατ+φ and τ > 0, α > 0, we obtain that

f (τ) = (α + |ε0|) sech(ατ + φ), (24)

where φ± = ln
(

α+|ε0|
�0

±
√(

α+|ε0|
�0

)2 − 1
)
. The distance that the soliton will propagate from

the moment τ = 0 until it completely stops reads L = ln(1 + e−2φ±)/(8αk). If the controlling
field is switched off very fast, i.e. α → ∞, the distance L tends to zero. In the first case of
φ−, when the maximum of the secant is closer to zero moment of time τ , we obtain

L = ln(2α/�0)

4kα
+ O(α−2).

For φ+ we find L = O(α−3). Note that in the other limiting case, when ε0 
 �0 and α � �0

the phase φ− 
 0 and the switching front of the controlling field corresponds to almost
complete half of the secant pulse equation (24). The distance then reads L0 ≈ ln(2)/(8kα).

Inverting the time evolution we note that by switching the background field on from zero to
�0 according to equation (24) we recreate the slow-light soliton, which was previously stored
in the medium in the form of a localized polarization of the lower atomic levels. Sending a
controlling pulse of the form equation (24) we can move the stored localized polarization by
the distance 2L0. In other words, the secant type pulses of auxiliary laser field can transfer the
memory bits in a controllable way.

Discussion. In this paper we derived the slow-light soliton from the sufficient condition (7).
In fact, the inverse scattering analysis as applied in [26] to equations (3), (4) shows that for
slow-light solitons a stronger condition holds, namely ψ3 = − 1

2|λ−�|�a, where λ is a complex
number parameterizing the soliton (in our case λ = iε0). This means that the condition (7) is
also the necessary condition for the slow-light solitons to exist with k = ν0

8|λ−�|2 .
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